
EE314 Digital Electronics Laboratory Term Project
FPGA Based Point of Sale Terminal

Ataberk Öklü, Alper Soysal, Ahsen Topbaş, Göksu Uzuntürk, Erkan Doğan
B.S. Electrical Electronics Engineering

Middle East Technical University

Abstract—Implementing a point of sale (POS) terminals on
field-programmable gate array (FPGA) is a challenging task due
to the limitations in memory of FGPA. Additionally, one needs
to consider the hardware while creating software when dealing
with FGPA because every code block may not be meaningful
or synthesized by FGPA. Therefore, the software should be
reasonable in terms of speed, memory and synthesizability.
Our approach to the problem takes these restrictions into a
consideration and comes up with new solutions.

Index Terms—FPGA, Verilog, Logic Design

I. INTRODUCTION

The usage of point of sale POS terminals have increased
with digitalization in markets, restaurants. POS terminals are a
combination of hardware and software which enables cashiers
or waiters to list down the order list. In this project, we
have designed a POS terminal by using a field-programmable
gate array (FPGA), which is an integrated circuit with pro-
grammable logic blocks. FGPA is configured by using a hard-
ware description language (HDL). In this project, we have used
Verilog as HDL. We have designed a 800x600 resolution POS
terminal screen by using VGA interface. The project consists
of six main blocks, namely VGA controller, button controller,
hover controller, basket controller, text controller and a state
machine which combines these controllers. In this paper, our
different techniques are provided in the ”Approach To The
Problem” part. The implementation of the project is technically
explained with the main blocks. There is a ”Demonstration
Photos” part which shows the photos of the project. Our
findings are given in the “Conclusion and Comments” part.
Finally, Verilog codes are shared as a link in the “Appendix”
part.

II. APPROACH TO THE PROBLEM

First of all, we have learned the basics of FPGA and VGA
and then determined the layout of our screen. We have decided
to use a 600x800 screen instead of 480x600 to be more flexible
using the area. For using a 600x800 screen, a 40 MHz clock
signal is required instead of a 25 MHz clock signal, so the
frequency of the FPGA’s clock (50 MHz) was decreased to 40
MHz using PLL. Also, we have used a 24-bit color format for
our screen. We have converted our fruit pictures to .mbp files
using our homemade MATLAB code. For writing texts on the
screen, we have used ASCII characters instead of memorizing
the pictures of words, which allows us to write anything we

want on the screen. On the other hand, we have used the 7-
segments to see the barcode or quantity entered and LEDs to
follow which state is active.
While doing these, we have always been careful about our re-
source usage. We have used the minimum number of registers
and logic units as much as we can. Hence, our final resource
usage had become 6%, although our sales terminal ”SMARKT
I/O” supports twelve products instead of six, which is the
minimum number determined by the project constraints.

III. VGA CONTROLLER

Video graphics array (VGA) is widely used for video
transmission tasks. VGA requires three connections, namely
R (Red channel), G (Green channel), B (Blue channel) and
these R-G-B data is digitally provided to VGA port. In the
project, we have used 800x600 resolution frame at 60 Hz
for POS terminal screen by using VGA interface. 800x600
resolution means that there are 600 lines and each line consists
of 800 pixels. Each frame is started to displayed from the
first line and the order is going from left to right. There
are two synchronization signals, namely hsync (horizontal
synchronization) and vsync (vertical synchronization) which
controls the construction of a frame. Hsync tells the monitor
when a line is completed whereas vsync tells the monitor when
a frame is completed. In hsync and vsync signals, some of
pixels are used for displaying while some of which creates
blanking time specified by front porch and back porch around
sync pulse. We have determined these pixel values from an
external source [1], as shown in Figure 1. In addition to
vsync and hsync signals, we have implemented two counters
(CounterX and CounterY) to understand currently available
pixel coordinates.

As required, there should be twelve item images and the
pixel values of these item images are kept in ROM. We have
defined a product id for each item. The top left item has a
product id of zero, on the left the product id becomes one,
and it goes like that. By a simple math with counters and
product id, we have accessed the ROM addresses of the item
images and designed a POS terminal screen, as indicated in
Figure 2.

IV. BUTTON CONTROLLER

The DE-01 SoC Development Board has multiple manual
inputs, including buttons and switches, to provide an interac-



Fig. 1. Horizontal and Vertical Timing

Fig. 2. POS Terminal Screen Layout

tive interface. In this project, four of four push-button inputs
and three of nine switches are used. The SW1 and SW2
are the mode selection switches, while SW0 is the Button
Management switch, explained in this section. This controller
aims to manage debouncing and synchronization of the inputs
and provide necessary state and pulse outputs used in other
sub-blocks and the state machine.

Fig. 3. Button Controller Block Diagram

A. Board Input Schematics

To design a proper controller, first, the input characteristics
should be analyzed carefully. The schematic file is provided
in a *GitHub Repository*. The four push-button sections is
shown below.

There are multiple essential points that should be extracted
from the above schematic. The first property of the input is

Fig. 4. The DE-01 SoC Development Board Push Button Schematic

ACTIVE LOW since a button press pulls the KEYIN# to
GND. In addition, the IDLE state of the buttons is HIGH,
due to 100K pull-up resistors. Another critical point is having
a 1uF bypass capacitor connected to KEYIN# for each pin,
preventing high-frequency content or noise from affecting the
output state of the button. A simple calculation of τ = R∗C =
100ms shows that there is a strong bounce filter. However,
an addition of software debouncing applied to satisfy more
generic design, which can be used other board not having these
bypass capacitors connected, still runs correctly. 74HC245 IC
is the octal-bus having tri-state buffers and direction selection
for general purpose design; but, as it can be seen from the
above figure, this 74HC245 is fixed direction and has no
High-Z output feature, only transfers left side to right side
combinationally.

Switch connections have no external capacitors, only serial
resistors to limit current; therefore, these inputs are vulnerable
to mechanical switch noises. Therefore, these inputs also
cleaned using debounce modules.

B. Button Manager Module

The DE-01 SoC Development Board has four user buttons
to interact with; however, the project requires more than four
distinct triggers for digit inputs and direction inputs besides
command inputs like select, cancel, etc. Therefore, this module
allows the user to switch between push button roles between
informative inputs and command inputs using the SW0 switch.
When SW0 is high, push-buttons are in the command mode
representing select, cancel, backspace, or other state-depended
actions. While SW0 is low, push-buttons are representing
either digits or direction keys depending on the shopping
state. The active high current status of both KEY and CMD
information is kept in KEY Reg and CMD Reg registers,
respectively, to inform other blocks of the current statuses of
input in the level form. The active-high level form can be used
in trigger or condition for logic circuits.

C. Button Level Pulse Convertor

An active-high level status of a button can represent whether
the button is pressed or not at the time instant when the check
is done. However, if an enable-like input needed to be driven
according to the time instant when the debounced clean button
pressed action is received, a pulse should be generated for



one clock period. This pulse signal can trigger shift register
modules to take only the specified input by the state machine
to save. Since the one-clock-period pulses are helpful for
such operations, Button Controller must provide these for each
CMD Reg and KEY Reg statuses.

V. HOVER CONTROLLER

The Hover Controller block is responsible for highlighting
both products listed in the basket section and the product
images. The product images have a square mark on the left
upper side to indicate the product is selected. There are two
conditions where the products are highlighted; first, every
barcode digit entered triggers matching items; second, when
the user is in the interactive selection mode. On the other
hand, when Basket Edit mode is activated, only the product list
is hovered, indicating the currently selected product. Hence,
this controller consists of two distinct sub-blocks, and one
is responsible for barcode-related hovering, the other is for
selected item hovering depending on the operation mode.

Fig. 5. Hover Controller Block Diagram

The selected item hovering process is simplified since all
other blocks are compatible with Product IDs. Either Basket
Edit or Interactive Select Mode, only one selected item has
hovered; therefore, we use either array ID or Product ID in our
algorithm. On the other hand, the matching barcode highlight-
ing process is more complicated and resource-intensive. The
Barcode Hover Sub-block should be able to identify possible
products according to the current state of the barcode entered.
Although the task seems like a database search structure in
the programming aspect, it can be more efficient when it is
considered a hardware description language. Therefore, we
manage to generate a possible product list with no register
used in this sub-block. This optimization resulted in freeing
significant available resources that we can use for other
operations.

VI. BASKET CONTROLLER

The basket controller is the module that adds selected
products to the basket, calculates the price of each selected
product and the total price every time, cancels the selected
product, and decreases the total price accordingly. The state
machine drives it. It takes six inputs: clock, enable, active-
low reset, product ID, quantity, and cancel. When enable is
high, it takes product ID and quantity inputs and saves them

into the internal registers to remember them afterward. At the
same time, it calculates the price of each selected product
and saves these prices. Also, it updates the total price and the
number of products in the basket after each product addition.
The basket controller can hold a maximum of twelve products.
When cancel is high, the basket controller takes product ID
and deletes this ID, quantity, and price from the registers,
decreasing the total price and the number of products in
the basket. It gives thirty-eight outputs: two of them are the
number of products and the total price of the products in
the basket. Other thirty-six outputs are twelve product IDs,
twelve quantities, and twelve prices. The basket controller
continuously gives these outputs, so other modules do not need
to remember the data related to the products in the basket.
Finally, when the reset input is low, the basket controller sets
all internal registers and outputs to their default values.

VII. TEXT CONTROLLER

Text controller is a module that writes the basket informa-
tion to the screen. The module takes the basket outputs and
VGA controller counters as input and gives one-bit output. In
this controller, we add the all characters in the ASCII table
to the font ROM as 8x16 bits. These bits represent the pixels
on the screen. In the figure 6, you can see that each character
is represented zeros and ones. If the bit is 1, the pixel will
paint a constant color. If the bit is 0, the pixel will paint the
background color. Thus, any word can be written to the screen.
To achieve this, we used two sub-systems.

Fig. 6. Character pixel explanation and example from font ROM

The first part consists of presets of the items and their
corresponding quantity and price values. Since the basket
controller module stores the data as a combination of the
item name, quantity, and price, this preset uses a conditional
structure to use only the necessary part in the second part. This
part only created outputs of the first rows of the characters,
and a counting method is used in the second part for size
optimization. For item names, twelve case options are created
for product id inputs and stored in these options. Each option
is set to save 9 characters and create an output register of 63
bits long to simplify the storage. A similar method with item
names used and the output register creates 11 characters with



77 bits long for quantity and price. Since the quantity and
price inputs are 1 BCD and 4 BCD long, respectively, their
position is fixed on the output register. A dot sign is placed
between the second and third BCD values after multiplying
the price by 100 to handle fractional components. An enable
method is used not to create a new module for the total price.
For this particular case, the structure of the output register is
changed according to the enable value since the total price can
be 5 BCD long.

The second part’s goal is the send the pixel information
to the VGA controller. In the font ROM, each character is
represented with 7 bits since there is 128 character in the
ASCII table. To make easy writing and reading pixels, each
character consists of 8 bit (columns) x 16 bit (rows). Therefore,
inputs of the font ROM take 11 bit where the first 7 bit
represents a character, last 4 bit represents the row number of
the character. While sending the pixel information to VGA,
there are four counters which are column, character, row,
and basket. Since the VGA counters count horizontally, the
column counter selects the pixels from the first row of the first
character of the first product in the basket. When it reaches 8,
it returns to 0 and increases the character counter, and starts
to write the top of the second character. When the characters
finish, the character counter returns to zero and the row counter
is increasing and start to write the second row of the first
product in the basket. When the row counter reaches 16, the
first product in the basket is finished and the basket counter is
increased by 1. Then, the same procedure is applied to other
products. Thus, all products and their prices are written on the
screen.

VIII. STATE MACHINE

The state machine is responsible for managing other mod-
ules depending on the operation mode or state. It sends activa-
tion, enable, and reset pulses when needed to operate correctly.
There are seven states, namely, “Start”, “Idle”, “Barcode”, “In-
teractive”, “Quantity”, “BasketEdit”, “EndShopping”. These
states are based on the nature of the design. “Start” state is
for preparing the modules for new customers and resetting
previous information. When reset is done “Start” state directly
goes to “Idle” state, where the operation mode is decided
and redirected. There are three operation modes, “Barcode
Selection Mode”, “Interactive Selection Mode”, and “Basket
Edit Mode”. According to mode prerequisites, the “Idle” state
redirects the state to the proper mode. The “Idle” state handles
the transition between operations. Basket Edit operation mode
is superior to other operation modes; when activated, it has
priority. The condition for every operation mode is checked
inside its state; hence, a transition between operations can be
catch and handled by again “Idle” state. After any product
selection by either Interactive or Barcode, the state is transited
to “Quantity” state, where the machine waits for quantity input
from the user or the cancel action. When quantity is entered,
the state machine handles the other controllers in order to add
the product to the basket and display it. Then, it again forwards
the state to “Idle” state where the operation mode is decided at

the next clock pulse, reaching either “Barcode”, “Interactive”
or “BasketEdit” states.

On the other hand, if “BasketEdit” state is reached, the
state waits for direction input from the user. If the user wants
to select the item which is wanted to be deleted, “Select
Command Button” is pressed. Finally, when the user wants
to end the shopping, “End Shopping Command Button” is
pressed, which leads to “EndShopping” state. The “EndShop-
ping” state waits for the user for confirmation by pressing “End
Shopping Command Button” again. When the confirmation
is done, it directs the state to “Start” state, where a new
shopping environment is prepared. In Figure 7, the State

Fig. 7. The State Machine Viewer result generated from Quartus Prime

Machine Viewer result generated from Quartus Prime can be
seen. For a detailed state flowchart, please refer to Appendix
I.

IX. DEMONSTRATION PHOTOS

Fig. 8. Starting view of the screen

In this section, we are showing the some photos of the
demonstration. In the figure 9, you can see that first two seven
segment display shows the product ID which is represented by
increasing left to the right. For example, pineapples product ID
is 05 and babanas product ID is 00. Last 4 segment represents
the product barcode. Also, leds on the FPGA board shows the
states of the machiene. So, we can check the current state from
FPGA board.



Fig. 9. Seven segment and led usage

Fig. 10. Basket screen

X. CONCLUSION AND COMMENTS

In this project, a POS terminal is created with FPGA. The
entire design consists of five controllers, namely VGA con-
troller, button controller, hover controller, basket controller and
text controller. VGA controller is responsible from creating

Fig. 11. Flow summary of the project

a POS terminal screen with 800x600 resolution at 60 Hz.
Button controller adjusts switches and buttons to provide an
interactive movement in the screen. Hover controller highlights
the related images in the screen during the processes of
entering barcode digits and interactive selection modes. Basket
controller adds selected items to the basket, calculates the
prices and it also allows to delete item from a basket. Text
controller writes the basket information (i.e names of items
in the basket and their prices) to the POS terminal screen.
Finally, there is a state machine which combines and governs
these five controllers. To be able to create this project, we
have benefited from our knowledge within the concepts of
sequential and combinational logic blocks and gates.

XI. REFERENCES

[1] (n.d.). Retrieved from http://tinyvga.com/vga-
timing/800x600@60Hz

XII. APPENDIX

Whole project file can be found with following link.
https://github.com/AtaberkOKLU/SaleTerminal


