USART - BootLoader

SOLUTION TO THE PROBLEM
AN EXAMPLE PROGRAM

Ataberk OKLU
METU

Table of Contents

The bootloader via USART / UART INTEITACE ...ccuvviiiiiieiieeeeeeee ettt et eaaae e 2
Description of the Problemeei e 2
Where is this BOOTO PiN?coccuiiiiiiiiiiiiiiiieiieeeeesee et 3
(2 ToTo] 0 I o 1T o T o1 o] o] U= 3 0 SRR 4
First Step: UART RX INT@ITUPT ... s 4

Reset2BootLoader FUNCtion Definitionccooueeiieiiiiiienieceeeee e 4
Flash Write FUNCtion Definition.........coceeiiiiiiiiieeieeeee e 4
Second Step: SOft-Reset HaNAIING.......ccuuiiiiiiiiiii et e e 5
MEIMOTY IMTAPPINE ettt s 6
HOW t0 CONNECE DEVICESoeiiiiiiiiiiiiiiiic e e s 7
Which Port the deviCe iS USING ..cccccuuiieiiiiiie ettt e s e e e e e e e aees 7
What Happens in BOOtIoader PrOCESSccvcviiiiiiiiiieiciiiiee e scitee et e et e e e ssvae e e e araeeeenes 8
How can we order @ COMMANGcccueiiiiiiiiiiiiieeeee e 11
CommMUNICALION SAFELY ..iiiiiiiiiie e et e e e e nae s 11
Receiving Information via BoOtloader..........cooviiieiiiciiieiciee e e 12
How to Write our code - Write Memory commandc.oooecciiiieeee e e e 13
Where tO WIEE OUF COOR.....couuiiiiiiiiiiieitee et 14
Some constraints We NEEA t0 ODEY.....uueeiiiii i et e e e e e 14
Example Code t0 D8 WIEENuvviieiii et e e e e e e e s eearaaeeees 15
An Example Program — STM32 FIGShEruuueiie ittt e e 16
(OfeY o] aT=TotdTo] o T o] o 1=] o o 1=t 16
Read or Write ProteCtion........coocuiiiiiiieeieeeeeee e 17
GET Information from the device via bootloaderc.cceooiiiiiiiiiiiiiieee 18
WRITE CIMID ...ttt sttt et sbe e st esbe e et esb e e s b e e sbeeenbeesaeeenneesnneans 19
01411 YA e Yo RS 20
HEX REAAET ...ttt ettt e e e s e e s e e sane e e e 20
(0N I = ToTo] d Mo Y- To [T ol I g == T U PURPRRNS 21

The bootloader via USART / UART interface

Description of the problem

The target device has only three UART pins accessible from outside world, due to security
and safety issues. However, built-in Bootloader can only be accessed from dedicated boot0 pin,
which is not available for our case. Therefore, the solution should bypass the traditional way and
trigger to bootloader mode from UART pins.

Pattern Condition

Pattern 1 | BootQO(pin) = 1 and Boot1(pin) =0

Pattern 2 | BootO(pin) = 1 and nBoot1(bit) = 1

BootO(pin) = 1, Boot1(pin) = 0 and BFB2(bit) = 1

Pattern 3 | BootO(pin) = 0, BFB2(bit) = 0 and both banks do not contain valid code
BootO(pin) = 1, Boot1(pin) = 0, BFB2(bit) = 0 and both banks do not contain valid code
BootO(pin) = 1, Boot1(pin) = 0 and BFB2(bit) = 1

Pattern 4 | BootQ(pin) = 0, BFB2(bit) = 0 and both banks do not contain valid code
BootO(pin) = 1, Boot1(pin) = 0 and BFB2(bit) = 0

BootO(pin) = 1. Boot1(pin) = 0 and BFB2(bit) = 0

Pattern 5 | BootO(pin) = 0, BFB2(bit) = 1 and both banks do not contain valid code
BootO(pin) = 1. Boot1(pin) = 0 and BFB2 (bit) = 1

BootO(pin) = 1, nBoot1(bit) = 1 and nBoot0_SW(bit) = 1

nBoot0(bit) = 0. nBoot1(bit) = 1 and nBoot0_SW(bit) = 0

BootO(pin) = 0, nBoot0_SW(bit) = 1 and main Flash memory empty
nBoot0(bit) = 1. nBoot0_SW(bit)=0 and main Flash memory empty
BootO(pin) = 1. nBoot1(bit) = 1 and BFB2(bit) =0

Pattern 7 | BootO(pin) = 0, BFB2(bit) = 1 and both banks do not contain valid code
BootO(pin) = 1, nBoot1(bit) = 1 and BFB2(bit) = 1

Boot(pin) = 0 and BOOT_ADDO(optionbyte) = 0x0040

Boot(pin) = 1 and BOOT_ADD1(optionbyte) = 0x0040

Pattern 6

Pattern 8

Figure 1 - BootLoader Activation Patterns - Source

The target MCU is STM32L476. This MCU has Pattern 7 to access bootloader mode.

Boot mode selection

nBOOT1 BOOTO
(option bit) (pin)

X 0 User Flash memory D E FAU LT

System memory (bootloader)

0 1 SRAM1
Qe DEBUG

Figure 2 - Boot Modes - Source

The Figure 2 shows us that when boot0 pin is low, the MCU start with the User Flash
Memory which hold the main program. In order to boot the MCU in bootloader mode, which is kept
in System Memory, we need to set boot0 pin. The default of the nboot1 register is set.

https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf#page=23
https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=8

Where is this BootO Pin?

Y/

life.augmented
NUCLEO-L4TERG g
CN7 HEADER
‘ oD (8Tt sige PC“‘Z

g

RESET

ol DOO0E

<
=

CN6

P11 SSELPETTTHE

TR erialt RX

SERZBUI = VIN

1]

—
)

- W_TXW_CTWMII\ PR
' Szl RX[beral? RTHEIITAVAN Andogln
' raogu JPIT_SSE——] Braiogn } R PAR
VBAT : TR Analoghn | P) (NS
{naigi | Al ' Y oaigin | M (po
fnaogi } F7i2 105} o 1203561 DR

For convention, pushing BootO pin to HIGH, then resetting results in BootLoader Mode.

BootO pin problem?

Since Boot0 pin should be pushed HIGH by physically, it requires at least one more pin
accessed from outside world other than GND, RX, and TX, reserved UART pins. We needed to bypass
this requirement to achieve jump to BootLoader @ System Memory (0x1FFF0000).

The constructed bypasser is using the method of “Cipher Check.” The method is merely
checking the value at the predefined memory location, whether it is the predetermined cipher,
triggering the jump to BootLoader @ System Memory (Ox1FFFO000) (See Memory Mapping). If it is not
the case, Reset_Handler @ startup.s file initiates the main program as default. However, when cipher
is caught at the predefined memory location, then Reset_Handler, mention above, executes the
Reboot_Loader routine in the startup.s file. And, the only way the cipher to be written to the specified
location is triggering the RX Interrupt of reserved UART pins. Moreover, the following executions
guarantee that cipher is invalidated to prevent repetitive executions of Reboot_Loader, mentioned
above. Let us examine the method elaborately.

First Step: UART RX Interrupt
When RX of the reserved accessible UART interface is triggered, it calls USARTx_IRQHandler,
which is executing the Reset2BootLoader function defined in main.c file:

Reset2BootLoader Function Definition
void Reset2BootLoader (void)

{

FlashWrite (CIPHER ADDR , MAGIC CIPHER); // Write Special Code
"ATABERK" to End of the SRAM2 0x2000 0000

HAL NVIC ClearPendingIRQ(USART1 IRQn) ; // USART1 Pending Bit RESET

__DSB(); // Blocking The Program
until every memory instructions are done.

NVIC SystemReset(); // Soft-RESET -> startup.s
file -> RESET HANDLER + REBOOT LOADER
}

Flash Write Function Definition

void FlashWrite(uint32 t address, uint32 t data) {

// WHEN ADDR IS @ SRAM1, IT IS SUFFICIENT
((volatile uint32 t¥) (address)) = data;

// IF FLASH IS SELECTED, THE CODE BELOW
/* FLASH WRITER START
uint32 t PAGEError = 0;
FLASH EraseInitTypeDef EraseInitStruct;
EraseInitStruct.TypeErase = FLASH TYPEERASE PAGES;
EraseInitStruct.Page = 255;
EraseInitStruct.NbPages = 1;
EraseInitStruct.Banks = FLASH BANK 1;

HAL FLASH Unlock();
_ HAL FLASH CLEAR FLAG(FLASH FLAG EOP | FLASH FLAG OPERR |
FLASH FLAG WRPERR | FLASH FLAG PGAERR | FLASH FLAG PGSERR);

if (HAL FLASHEx Erase (&EraselInitStruct, &PAGEError) != HAL OK)
HAL FLASH GetError();

HAL FLASH Program(FLASH TYPEPROGRAM DOUBLEWORD, address, data);
HAL FLASH Lock();
FLASH WRITER END */

Second Step: Soft-Reset Handling
When the device is reset, Reset_Handler @ startup.s file runs:

; Reset Handler

Reset Handler PROC

EXPORT Reset Handler [WEAK]

IMPORT SystemInit

IMPORT main
LDR RO, =0x2000FFFO0 ; CIPHER ADDR @ END OF SRAMI
LDR R1, =0xA7ABE12C ; ATABE R K - The MAGIC CIPHER
LDR R2, [RO] ;7 Take the value CIPHER ADDR
STR RO, [RO] ; Write itself onto itself
CMP R2, R1 ; CHECKING PROCCESS
BEQ Reboot Loader ; IF true: Execute Reboot Loader
LDR RO, =SystemInit
BLX RO
LDR RO, = main
BX RO
ENDP

; Reboot Loader
Reboot Loader PROC
EXPORT Reboot Loader

LDR RO, =0x40021060 ; RCC_APB2ENR

LDR R1, =0x00000001 ; ENABLE SYSCFG CLOCK

STR R1, [RO]

LDR RO, =0x40010000 ; SYSCFG_MEMRMP

LDR R1, =0x00000001 ; MAP ROM AT ZERO

STR R1, [RO]

LDR RO, =0x1FFF0000 ; SYSTEM MEMORY STARTING ADDR
LDR SP, [RO, #0] ; SP @ +0

LDR RO, [RO, #4] ; PC @ 44 - RESET VECTOR
BX RO

ENDP

Firstly, the cipher and the address are 0xA7ABE12C and 0x2000FFFO, respectively.
The memory address is selected to be at the end of the SRAM1 portion of the STM32L476 MCU so
that we can safely overwrite even there is a variable using this address. (See Memory Mapping).

In Reset_Handler routine, we check if this address holds any but the cipher. In the case
of the cipher existence, indicating that UART RX Interrupt has occurred, Reset_Handler
executes the Reboot_Loader routine. In the Reboot_Loader, we first enable RCC, Clock, and
Memory Initiations then jump to Ox1FFF0000 address holding the BootLoader @ System
Memory (See Memory Mapping), and goes its Reset_Vector lying 4 bytes offset from the SP.
Moreover, writing the cipher address into itself performs invalidation of the cipher at each reset,
avoiding recursive occurrence.

On the other hand, not founding the cipher in the address means no UART RX Interrupt
triggered, therefore, no need to jump to BootLoader. Then, hence the condition is not satisfied; Reset_
Handler continues with loading SystemlInit and jumps to the __main vector —the main program vector.

Memory Mapping

OxFFFF FFFF

0xBFFF FFFF
Y Reserved
Contex 0XA000 1400
7 Internal QUADSPI registers
Peripherals 0xA000 1000 -
FMC registers
0xE000 0000 0xA000 0000
0x5FFF FFFF
4] Reserved
0x5006 0C00
AHB2
0x4800 0000
0xC000 0000 Reserved
0x4002 4400
FMC and AHB1
5 QUADSPI 0x4002 0000
registers Reserved
0x4001 6400
0xA000 0000 APB2
QUADSPI Flash 0x4001 0000
bank Ox4000 9800 Reserved
4 0x9000 0000 B
FMC bank 3 0x4000 0000
0x8000 0000 Ox1FFF FFFF Se———
0x1FFF F828
Option Bytes
3 0x7000 0000 Ox1FEF F800
Reserved
FMC bank 1 0x1FFF F000
0x6000 0000 System memory
0x1FFF 8000
Reserved
O0x1FFF 7828
2 Options Bytes
0x1FFF 7800
Reserved
0x1FFF 7400
Peripherals OTP area
0x4000 0000 Ox1FFF 7000
System memory
1 Ox1FFF 0000
Reserved
SRAM1 0x1000 8000 p——
0x2000 0000 0x1000 0000
Reserved
0 CODE 0x0810 0000
Flash memory
0x0800 0000
0x0000 0000 0x0010 0000 oserved
Flash, system memory
or SRAM, depending on
|:| Reserved 0x0000 0000 BOOT configuration
Figure 3 - Memory Map - Source
Boot_.‘rsmap in | Bootiremapin | Boot/remapin Remap in Remap in
Addresses main Flash embedded system FSMC QUADSPI
memory SRAM 1 memory
0x2000 0000 - 0x2001 7FFF | SRAM1 SRAM1 SRAM1 SRAM1 SRAMA1

Figure 4 - SRAM1 Memory Addresses in different boots - Source 1 — Source 2

https://www.st.com/resource/en/reference_manual/dm00083560-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=76
https://www.st.com/resource/en/reference_manual/dm00083560-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=92
https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=4

How to Connect Devices
Hardware connection requirements

To use the USART bootloader, the host must be connected to the RX and TX pins of the
desired USARTX interface via a serial cable.

Figure 1. USART connection

Pull-up W 1
RS232
; STM32
UART Hﬂst Transceiver -
e L_RX_| Microcontroller
GND GND |
MSvI5098V1

1. A pull-up resistor must be added, if pull-up resistor are not connected in host side.
2. An RS232 transceiver must be connected to adapt voltage level (3.3 fo 12 V) between STM32 device and
host.

+V typically is 3.3 V and R typically 100 K. These values depend upon the application and
the used hardware.

To use the DFU, connect the microcontroller USB interface to a USB host (i.e. a PC).

For TTL connection from PC only RX, TX and GND connections are sufficient if you are
using UART TTL Converter. If you are using the USB interface, no further connections are
needed.

Which Port the device is using

If you are using your PC to connect to the device, by using either USB TLL converter or
direct USB connection, the Port likely to be in the form of “COMXx”. To check to port COM
number, you can use “Device Manager” on WindowsOS. Under “Connection Ports”, you can
see your device and port number listed here. If not the case, you may need to install the
device driver. Here is the driver for the PL2303 USB TTL converter.

http://www.prolific.com.tw/US/ShowProduct.aspx?p_id=225&pcid=41

What Happens in Bootloader Process
When we jump to BootLoader via our Reboot_Loader routine, the device is searching all
receiver channels to catch a communication request. The protocol list is given below:

USART1 on pins PA9/PA10
USART USART2 on pins PA2/PA3
USART3 on pins PC10/PC11

V Bootloader checks if HSE present . USB clock is HSE
UsB USB DFU interface on pins PA11/PA12 | If no Bootloader checks if LSE present: USB clock is MSI
auto-trimmed with LSE

CAN CAN1 on pins PB8/PB9

SPI1 on pins PA4/PAS5/PA6/PAT

Pl SPI2 on pins PB12/PB13/PB14/PB15
" 12C1 on pins PB6/PB7
12C 12C2 on pins PB10/PB11 I2C slave address is 0x86

12C3 on pins PCO/PC1
Figure 5 - BootLoader Communication Protocols - Source

We focus on USART1 connection, for further information, please refer to the table and the
source below:

Bootloader Feature/Peripheral State Comment
The system clock frequency is 72 MHz (using the
HSlenabled |p) | ciocked by HSI)
RCC The clock recovery system (CRS) is enabled for the
- DFU bootloader to allow USB to be clocked by
HSI48 48 MHz
RAM _ 16 Kbyte starting from address 0x20000000 are
Common to all used by the bootloader firmware
posticaders Bk 28 Kbyte starting from address 0x1FFF0000,
il £ B contain the bootloader firmware
The independent watchdog (IWDG) prescaler is
configured to its maximum value. It is periodically
IWDG - refreshed to prevent watchdog reset (in case the
hardware IWDG option was previously enabled by
the user).
Securable memory | _ The address to jump to the exit securable memory
area area @Ox1FFF6800
Once initialized the USART 1 configuration is: 8-bit,
USARTY Enabled even parity and 1 Stop bit
USART# bootioader | (2RT1_RX pin Input PA10 pin: USART1 in reception mode
USART1_TX pin Output PA9 pin: USART1 in transmission mode
Once initialized the USART2 configuration is: 8-bit,
USART2 Enebled even parity and 1 Stop bit
USART2 bootioader I';carT2 RX pin Input PA3 pin: USART2 in reception mode
USART2_TX pin Output PA2 pin: USART2 in transmission mode
Once initialized the USART3 configuration is: 8-bit,
USART3 Enabled even parity and 1 Stop bit
USARTS3 bootloader USART3_RX pin Input PC11 pin: USARTS3 in reception mode
USART3_TX pin Output PC10 pin: USART3 in transmission mode

Figure 6 - Detailed Explanations For USART Connection - Source

https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=10
https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf#page=214

81 [Blue PushButton]
RCC_OSCA2_IN
RCC_0SC32_0UT
RCC_OSC_IN

RCC_OSC_OUT

STM32L476RGTx
LQFP64

As stated, first, we need to

s initialize our USART1 in proper settings.
To do this, we facilitate an ST software

o called STM32CubeMX. By setting PA9
and PA10 pins, RX, and TX, respectively.

The software offers much more

convenience.

Clock Configuration

Additional Software

USART1 Mode and Configuration

System Core 5 Mode |Asynchrunc|us V|
Hardware Flow Control (RS232) |Disable ~|

Analog ’ [Hardware Flow Control (RS485)

Timers >

Connectivity e Reset Configuration

Configuration

CAN1
12C1
12C2
12C3
~ Basic Parameters
LPUART1 Woaord Length
QUADSPI Parity
SDMMCA Stop Bits
@ sPi ~ Advanced Parameters
SPI2 Data Direction
SPI3 Cwer Sampling
SWPMI1 .
UARTA Single Sample
UARTS ~ Advanced Features
Auto Bautat
/ USART2 Auto Baudrate Mode
USART3 TX Pin Active Level Inversion
USB_OTG_FS RX Pin Active Level Inversion
Data Inversion
TX and RX Pins Swapping
Multimedia > Owerrun
DMA. on RX Error
Security > MSB First

Ewven
1

Receive and Transmit
16 Samples
Disable

Enable
ON 0XTF FRAME
Disable
Disable
Disable
Disable
Enable
Enable
Disable

Since the BootLoader is going to use this port also for Auto Boudrate finding, you may

need to set this parameter.

https://www.st.com/en/development-tools/stm32cubemx.html

To actively communicate and use the commands of bootloader, we need to follow the flow

below:

Figure 7 - BootLoader Protocol Selection - UART - Source

0x7F received on
USARTx Rx pin
Y
USARTx selected
Y
Auto-baud rate sequence
send ACK byte & disable h
unused penpherals 115200
|
Wait for a
command
Command
GET cmd recened GO cmd
GETemd| [RDemd | | (optional) | [GO cmd
routine routine Routines for routine
| loading |
| into RAM |
== -l. ==l
JPto_Address

We activate the communication over USART1 by sending a Ox7F data frame, consisting
of one start bit, 0x7F data, even parity bit, and one stop bit. According to the Application Note
— AN3155, the returned message is either ACK or NACK, which are 0x79 and Ox1F,

respectively.

10

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=5
https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=8
https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=8

How can we order a command

Command(" Command code Command description
Getl2 0x00 Gets the version and the allowed commands supported by
the current version of the bootloader.
Get Version & Read 0x01 Gets the bootloader version and the Read Protection
Protection Status(®) status of the Flash memory.
Get ID@ 0x02 Gets the chip ID.
3) Reads up to 256 bytes of memory starting from an
Read Memory' Ox11 address specified by the application.
Gol¥ 0x21 Jumps to user application code located in the internal
Flash memory or in the SRAM.
i Writes up to 256 bytes to the RAM or Flash memory
3)
Write Memory' 0x31 starting from an address specified by the application.
Erase!3/4) 0x43 Erases from one to all the Flash memory pages.

Erases from one to all the Flash memory pages using two
Extended Erase!®*) 0x44 byte addressing mode (available only for v3.0 USART
bootloader versions and above).

Write Protect 0x63 Enables the write protection for some sectors.

Write Unprotect 0x73 Disables the write protection for all Flash memory sectors.
Readout Protect 0x82 Enables the read protection.

Readout Unprotect® 0x92 Disables the read protection.

Figure 8 - Command List - Souce

Communication Safety
All communication from the programming tool (PC) to the device is verified by:

1. Checksum: received blocks of data bytes are XOR-ed. A byte containing the computed
XOR of all previous bytes is added to the end of each communication (checksum byte).
By XOR-ing all received bytes, data plus checksum, the result at the end of the packet
must be 0x00.

2. For each command the host sends a byte and its complement (XOR = 0x00).
3. UART: parity check active (even parity).

Hence we send our command byte followed by its complementary byte. For example, the
“GET” command 0x00 is sent with its complement OxFF, so that we establish secure
communication.

11

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=7

Receiving Information via Bootloader
There is a flowchart for the “GET” Command showing how the communication is handled.

Start Get

v

Send 0x00 + OxFF

Wait for ACK
or NACK

Receive the number of bytes
(version+commands)

Receive the supported commands

Wait for ACK
or NACK

ACK r
End of Get

The STM32 sends the bytes as follows:

Byte 1: ACK

Byte 2: N = 11 = the number of bytes to follow — 1 except current and ACKs.

Byte 3: Bootloader version (0 < version < 255), example: 0x10 = version 1.0

Byte 4: 0x00 — Get command

Byte 5: 0x01 — Get Version and Read Protection Status

Byte 6: 0x02 - GetID

Byte 7: 0x11 — Read Memory command

Byte 8: 0x21 — Go command

Byte 9: 0x31 — Write Memory command

Byte 10: 0x43 or 0x44 — Erase command or Extended Erase command

(exclusive commands)

Byte 11: 0x63 — Write Protect command

Byte 12: 0x73 — Write Unprotect command

Byte 13: 0x82 - Readout Protect command

Byte 14: 0x92 — Readout Unprotect command

Last byte (15): ACK

How to Write our code - Write Memory command
The maximum length of the block to be written for the STM32 is 255 bytes, according

to AN3115.

If the Write Memory command is issued to the option byte area, all bytes are erased
before writing the new values, and at the end of the command, the bootloader generates a
system reset to take into account the new configuration of the option bytes.

I Start WM() |

.

| Send 0x31+0xCE |

Send the start address (4 bytes)
& checksum

Send the number of bytes to be written
(1 byte), the data (N + 1 bytes)(?) and checksum

ait for AC NACK
or NACK

ACK ¢*
| End of WM() |

ai14641b

WM = Write Memory.
N+1 must be a multiple of 4.

The host sends the bytes to the STM32 as follows:

Byte 1: 0x31
Byte 2: 0xCE
Wait for ACK
Byte 3 to byte 6: Start address (byte 3: MSB, byte 6: LSB)
Byte 7: Checksum: XOR (byte3, byte4, byte5, byte6)
Wait for ACK
Byte 8: Number of bytes to be received (0 < N <255)

N +1 data bytes:(Max 256 bytes)
Checksum byte: XOR (N, N+1 data bytes)

13

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=18

Where to write our code

We cannot write the code directly to an arbitrary memory location. First, we need to
compile and build the code to obtain HEX or BIN translation of the code. For codding IDE, |
use KEIL uVisionV5 Software. After we built the code, we obtain the HEX file, ready to be
written.

The program must be written starting from the beginning of the FLASH Memory
@0x08000000 memory address (See Memory Mapping).

Some constraints we need to obey
Table 7. Flash memory alignment constraints on STM32 products (continued)

Series Alignment
STM32F2 4 bytes
STM32F3 4 bytes
STM32F4 4 bytes
STM32F7 8 bytes
STM32L0 8 bytes
STM32L1 8 bytes
STM32L4 8 bytes
STM32G0 4 bytes
STM32G4 4 bytes
STM32H7 8 bytes
STM32WB 8 bytes
STM32WL 8 bytes

Example of alignment:
e 4 bytes: 0x08000014 is aligned and passes, 0x08000012 is not aligned and fails
e 8 bytes: 0x08000010 is aligned and passes, 0x08000014 is not aligned and fails

14

http://www2.keil.com/mdk5/uvision/

Example Code to be Written
The code generated by KEIL uVision Software:

2:020000040800F2
:1000000q980400209DO10008FB130008211300083C
:10001000F9130008B1020008C11B0008000000002D
:10002000000000000000000000000000B116000801
:10002000B302000800000000FD130008B31600081A
:10004000B7010008B7010008B7010008B7010008R0
:10005000B7010008B7010008B7010008B7010008~20
:10006000B7010008B7010008B7010008B701000890
9 :10007000B7010008B7010008B7010008B701000880
10 :10008000B7010008B7010008B7010008B701000870
11 :10009000B7010008B7010008B7010008B701000860
12 :1000~A000B7010008B7010008B7010008B701000850
)
)

oUW

~J

13 :1000BO0OOB7010008B7010008B7010008B70100084C
14 :1000CO00B7010008B7010008B7010008B70100083C
5 :1000DO0OB7010008B7010008B7010008B701000820
:1000EO0OOB5020008B7010008B7010008B70100081 1
:1000FO00B7010008B7010008B7010008B701000800
:10010000B7010008B7010008B7010008B7010008EF
:10011000B7010008B7010008B7010008B7010008DF
:10012000B7010008B7010008B7010008B7010008CKE
:10013000B7010008B7010008B7010008B7010008RF
:10014000B7010008B7010008B7010008B7010008AF
:10015000B7010008B7010008B7010008B70100089F
:10016000B7010008B7010008B7010008B70100088F
:10017000B7010008B7010008B7010008000000003F
:10018000B7010008B7010008DFF80CDOOOFO7EF8D6
:1001900000480047011C00089804002006488047DA
:10012A00006480047FEE/FEE/FEE/FEE/FEE/FEE/5C

An A AT T AN AT T e T e T T T A T AANNMANT AA NN T ’ \

el HEX binary data length: 20.788 lines: 465 Ln:2 Col:10 (El :3211 ’

32 HEX_CODED FORM == 16 BYTES

This code is obtained via Flasher Program, which is going to be discussed next section. The whole flash
memory, in the first boot run, dumbed into code.hex and code.bin file.

:020000040800F2
8:020000020000FC
:20000000E00400209D01000BEB190008F7150008E9120008690500084D220008000000001C
:20002000000000000000000000000000351D00086B05000800000000ED150008371D000854
0004000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B701000820
J006000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100088C
J008000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100086C
J00AO000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100084C
000C0O00B7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100082C

o U W N

~]

)
)
)
)

10 JO0EO00OB7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100080C
1L e]OlOOOOB7010008370100083701000BBTO10008370100083701000837010008B701000aDF
12 J012000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B7010008BL

0014000B7010008B7010008B7010008B7010008B7010008B7010008B7010008B70100089F
J016000B7010008B7010008B7010008B7010008B7010008B7010008B7010008000000003F
J018000B7010008B7010008DFF80CDOCOFODAEF9004800471D240008E0040020064880477/8
J01A00006480047FEE7/FEE/FEE/FEE/FEE/FEE/FEE7FEE7FEE7FEE7B11D00088901000850

17 J01CO002DESFO5F0546002092469B46884160646814640241BE0284641464746224600F07/C
18 JO1EOOOOCFS53465A46C012A914110D311461846224600F0F3F82D1A67EBOL084F46224698
19 00200000120002100FOEAF817EBO0094E41201EA4F10104DFDC484631462A46434600F0AF
20 J02200000B830BCBDESCO9FD2B201EOQOQFS012B491EFBD270470022F6E710B513460A4635
21 002400004461946FFF/FOFF204610BD421C10F8011B0029FBD1801A7047034611F8012B97
22 J02600000F8012B002AF9D1184670472DESFE4F81EA030404F0004421F0004100944FF01F

0028000000B23F0004350EAQ01045EDOB2EAQ03045BDOC3F30A54C1F30A552C44A4F2F334CE

J02A0000194A0FB0254C1F3130141F48011C3F3130343F4801301FB024400FB034E840A78
002C000970A44EA815447EAB357A4FB076802958D0A0OSFBO07854FEA932C04FBOC54270524
J02E000029D4FEAO065847EAL637/BSEB08056EEBO70C870E920E47EA811742EA8312A7FBDO

/ J0300000201B6EBOB0164EB00042B0D43EA0C335E1844EB1C50DA465146E7FB0201C5F3D1
28 |:2003200013044FEAOB3343EAL14534FEAQ432019C43EA0603A4F10C040294009CCDES00B418

AN CANAANANANAATIAMATIOAATAAATIAAATNAAANNAA A SFMATI T AAT AMATIAMANATIATMOC M4 ATIAATIAMATAAMAA AT~

el HEX binary data length: 2.540.824 lines: 33.801 Ln:11 Col:74 1:64] 1

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

15

An Example Program — STM32 Flasher

Connection Properties

i Flash Loader Demonstrator -e @M
=
‘ ' l Le.augmented
Select the communication port and set settings, then click nest to open
conhnection.
— Commaon for all families
& UART
| |
Port Name |COM4 _v_l Parity Even _VJ
BaudRate [115200 +| Echo [Disabled v|
Data Bits 8 | Timeouts) |10 _'_I
Back MNext Cancel Close |‘

16

Read or Write Protection

i Flash Loader Demonstrator

Lyy ...

g Target is readable. Please click "Next" to proceed.

PROTECTION:

- Read Protection

- Write Protection

Hemove protection

Flash Size 64 KB
|' [|
| I
| 1
M |
1 L
L
Back Nexst Cancel Close
4

17

GET Information from the device via bootloader

(g Flash Loader Demonstrator — X
[’I augmented

Please, select your device in the target list
Target STM32L4x_b6_1024K ﬂ
PID (h) [0415 M
BID (h) |32 M GET CMD
Version [3-1 M

Flash mapping

Name Start addre... | End address Size &

% Page0 0x 8000000 02K

% Pagel 0x 8000800 0x B000FFF 0xB800 FLASH

% Page2 0x 8001000 0x 80017FF 0x800 (2K)

% Page3 0xB8001800 0x B0O1FFF oxgoo 2k) | MEMORY

% Paged4 0x 8002000 0x 80027FF 0xB00 (2K)

% Pageh 0x 8002800 0x 8002FFF 0xB800 (2K) ADDRESS

% Page6 0x 8003000 0x B0037FF 0xB00 (2K)

% Page? 0x 8003800 0x 8003FFF 0x800 (2K)

B Page8 0x 8004000 0x B0047FF 0xB00 (2K)

% Page9 0x 8004800 0x B004FFF 0xB00 (2K)

% Page... 0x 8005000 0x 80057FF 0xB800 (2K)

% Page... 0x 8005800 0x B005FFF 0xB00 (2K)

% Page... 0x 8006000 0x 80067FF 0x800 (2K)

% Page... 0x 8006800 0x 8006FFF 0xB00 (2K)

% Page... 0x 8007000 0x 80077FF 0xB00 {2K) v

Back Next Close

18

WRITE CMD

i Flash Loader Demonstrator -

{ Selection

(+ Erase necessary pages

" NoErase " Global Erase

@ (h)|soo0000 v =
Uptimize [Remove some F‘»

Jump to the user program

" Verify after download ll
'f I~ Apply option bytes _] '
" " Upload from device |

Upload to file
J (

(" Enable/Disable Flash protection

|DISABLE ~| |WRITE PROTECTION _~] fe)

" Edit option bytes

Cancel | Close "

Back I Next |

19

Utility Tools

Hex Reader

The compiler creates HEX file of the compiled program that should be written to the user
flash memory address to start the MCU with main program. An example for compiled HEX file is
given in the Example Code section, above. Since the HEX file contains more informaiton, like
memory address and memory page address, a utility tool should extract the program HEX Codes
from the file in order to send via UART while programming the MCU.

The Python script | wrote uses IntelHex library. The _BUFFER_SIZE setting holds the max
buffer size information. The HEX file is written, main program code is extracted then dived into
chunks with size of _BUFFER_SIZE.

intelhex IntelHex

_BUFFER_SIZE

intelHex = IntelHex()

_file name =

intelHex.fromfile(_file name+
hex_dict = intelHex.todict()

hex_ byte list = (hex_dict.values())

hex byte list.pop()
(hex_byte 1list)

hex chunk _list = [hex byte list[i: i + BUFFER_SIZE]

(hex_byte list), BUFFER_SIZE)]

hex_ chunk_list)
.format(
.join((x) X hex_chunk_list[©])))

)
(hex_byte list))
_BUFFER_SIZE)
(hex_chunk_1list))
(hex_chunk 1ist[-1]))

General Code Information:

Total # of Bytes: 7372
Buffer Size: 256
Total # of Chunks: 29

of Last Chunk bytes: 204

20

UART BootLoader Trigger

The first UART receive interrupt forces MCU to boot in bootloader mode. After MCU is in
BootLoader mode, the communication can be establish by the guide of the protocol discussed in
Bootloader Process section.

The Python code | wrote uses both time and serial libraries. Communicaiton constants are
constructed as defined in Commands sections.

serial
time

Bcolors:
HEADER =
OKBLUE =
OKGREEN =
WARNING =
FAIL =
ENDC
BOLD =
UNDERLINE

_BAUD_RATE

_PORT

_SERIAL_TIMEOUT

_BYTE_SIZE

_STOP_BITS serial.STOPBITS_ONE
_PARITY serial.PARITY_EVEN

_ACK
_NACK
_GET_CMD
_GV_CMD
_GED_ID_CMD
_WRITE_CMD
_READ_CMD
_GO_CMD
_ERASE_CMD

_UART_SELEC
ACK_counter

serialPort = serial.Serial(= PORT
= BAUD_RATE
= SERIAL_TIMEOUT
=_STOP_BITS
= BYTE_SIZE
= PARITY)

(Bcolors.HEADER . Bcolors.ENDC}™)
serialPort.write(_ACK)
sleep()

(Bcolors.OKBLUE _UART_SELEC Bcolors.ENDC}™)
serialPort.write(UART_SELEC)
sleep(1)

char = serialPort.read()
char == _ACK:
¢ Bcolors.OKGREEN Bcolors.ENDC}™)
char == _NACK:
¢ Bcolors.FAIL Bcolors.ENDC}")
sleep(1)

(Bcolors.OKBLUE Bcolors.ENDC _GV_CMD)
serialPort.write(_GV_CMD)
sleep(1)

char = serialPort.read()
char == NACK:
¢ Bcolors.FAIL Bcolors.ENDC}")

char == _ACK ACK_counter ==
¢ Bcolors.OKGREEN Bcolors.ENDC}")
ACK_counter +=
char == _ACK ACK_counter:
¢ Bcolors.OKGREEN Bcolors.ENDC}")

Bcolors.HEADER Bcolors.ENDC}")

22

	The bootloader via USART / UART interface
	Description of the problem
	Where is this Boot0 Pin?
	Boot0 pin problem?
	First Step: UART RX Interrupt
	Reset2BootLoader Function Definition
	Flash Write Function Definition

	Second Step: Soft-Reset Handling
	Memory Mapping
	How to Connect Devices
	Which Port the device is using

	What Happens in Bootloader Process
	How can we order a command
	Communication Safety
	Receiving Information via Bootloader

	How to Write our code - Write Memory command
	Where to write our code
	Some constraints we need to obey
	Example Code to be Written
	An Example Program – STM32 Flasher
	Connection Properties
	Read or Write Protection
	GET Information from the device via bootloader
	WRITE CMD

	Utility Tools
	Hex Reader
	UART BootLoader Trigger

