
Ataberk ÖKLÜ
METU

USART - BootLoader
SOLUTION TO THE PROBLEM
AN EXAMPLE PROGRAM

1

Table of Contents
The bootloader via USART / UART interface ... 2

Description of the problem .. 2

Where is this Boot0 Pin? .. 3

Boot0 pin problem? ... 4

First Step: UART RX Interrupt ... 4

Reset2BootLoader Function Definition .. 4

Flash Write Function Definition .. 4

Second Step: Soft-Reset Handling .. 5

Memory Mapping ... 6

How to Connect Devices .. 7

Which Port the device is using ... 7

What Happens in Bootloader Process ... 8

How can we order a command .. 11

Communication Safety ... 11

Receiving Information via Bootloader .. 12

How to Write our code - Write Memory command .. 13

Where to write our code .. 14

Some constraints we need to obey .. 14

Example Code to be Written .. 15

An Example Program – STM32 Flasher .. 16

Connection Properties .. 16

Read or Write Protection.. 17

GET Information from the device via bootloader .. 18

WRITE CMD ... 19

Utility Tools .. 20

Hex Reader.. 20

UART BootLoader Trigger ... 21

2

The bootloader via USART / UART interface

Description of the problem
 The target device has only three UART pins accessible from outside world, due to security

and safety issues. However, built-in Bootloader can only be accessed from dedicated boot0 pin,

which is not available for our case. Therefore, the solution should bypass the traditional way and

trigger to bootloader mode from UART pins.

Figure 1 - BootLoader Activation Patterns - Source

 The target MCU is STM32L476. This MCU has Pattern 7 to access bootloader mode.

Figure 2 - Boot Modes - Source

The Figure 2 shows us that when boot0 pin is low, the MCU start with the User Flash

Memory which hold the main program. In order to boot the MCU in bootloader mode, which is kept

in System Memory, we need to set boot0 pin. The default of the nboot1 register is set.

DEFAULT

DEBUG

https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf#page=23
https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=8

3

Where is this Boot0 Pin?

 For convention, pushing Boot0 pin to HIGH, then resetting results in BootLoader Mode.

4

Boot0 pin problem?
 Since Boot0 pin should be pushed HIGH by physically, it requires at least one more pin

accessed from outside world other than GND, RX, and TX, reserved UART pins. We needed to bypass

this requirement to achieve jump to BootLoader @ System Memory (0x1FFF0000).

 The constructed bypasser is using the method of “Cipher Check.” The method is merely

checking the value at the predefined memory location, whether it is the predetermined cipher,

triggering the jump to BootLoader @ System Memory (0x1FFF0000) (See Memory Mapping). If it is not

the case, Reset_Handler @ startup.s file initiates the main program as default. However, when cipher

is caught at the predefined memory location, then Reset_Handler, mention above, executes the

Reboot_Loader routine in the startup.s file. And, the only way the cipher to be written to the specified

location is triggering the RX Interrupt of reserved UART pins. Moreover, the following executions

guarantee that cipher is invalidated to prevent repetitive executions of Reboot_Loader, mentioned

above. Let us examine the method elaborately.

First Step: UART RX Interrupt
 When RX of the reserved accessible UART interface is triggered, it calls USARTx_IRQHandler,

which is executing the Reset2BootLoader function defined in main.c file:

Reset2BootLoader Function Definition
void Reset2BootLoader(void)

{

 FlashWrite(CIPHER_ADDR , MAGIC_CIPHER); // Write Special Code

"ATABERK" to End of the SRAM2 0x2000 0000

 HAL_NVIC_ClearPendingIRQ(USART1_IRQn); // USART1 Pending Bit RESET

 __DSB(); // Blocking The Program

until every memory instructions are done.

 NVIC_SystemReset(); // Soft-RESET -> startup.s

file -> RESET_HANDLER + REBOOT_LOADER

}

Flash Write Function Definition
void FlashWrite(uint32_t address, uint32_t data){

// WHEN ADDR IS @ SRAM1, IT IS SUFFICIENT

 ((volatile uint32_t)(address)) = data;

// IF FLASH IS SELECTED, THE CODE BELOW

 /* FLASH WRITER START

 uint32_t PAGEError = 0;

 FLASH_EraseInitTypeDef EraseInitStruct;

 EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;

 EraseInitStruct.Page = 255;

 EraseInitStruct.NbPages = 1;

 EraseInitStruct.Banks = FLASH_BANK_1;

 HAL_FLASH_Unlock();

 __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR |

FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGSERR);

 if (HAL_FLASHEx_Erase(&EraseInitStruct, &PAGEError) != HAL_OK)

 HAL_FLASH_GetError();

 HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, address, data);

 HAL_FLASH_Lock();

 FLASH WRITER END */

}

5

Second Step: Soft-Reset Handling
 When the device is reset, Reset_Handler @ startup.s file runs:

; Reset_Handler

Reset_Handler PROC

 EXPORT Reset_Handler [WEAK]

 IMPORT SystemInit

 IMPORT __main

 LDR R0, =0x2000FFF0 ; CIPHER_ADDR @ END_OF_SRAM1

 LDR R1, =0xA7ABE12C ; ATABE R K - The MAGIC_CIPHER

 LDR R2, [R0] ; Take the value CIPHER_ADDR

 STR R0, [R0] ; Write itself onto itself

 CMP R2, R1 ; CHECKING PROCCESS

 BEQ Reboot_Loader ; IF true: Execute Reboot_Loader

 LDR R0, =SystemInit

 BLX R0

 LDR R0, =__main

 BX R0

 ENDP

; Reboot_Loader

Reboot_Loader PROC

 EXPORT Reboot_Loader

 LDR R0, =0x40021060 ; RCC_APB2ENR

 LDR R1, =0x00000001 ; ENABLE SYSCFG CLOCK

 STR R1, [R0]

 LDR R0, =0x40010000 ; SYSCFG_MEMRMP

 LDR R1, =0x00000001 ; MAP ROM AT ZERO

 STR R1, [R0]

 LDR R0, =0x1FFF0000 ; SYSTEM_MEMORY_STARTING_ADDR

 LDR SP,[R0, #0] ; SP @ +0

 LDR R0,[R0, #4] ; PC @ +4 - RESET VECTOR

 BX R0

 ENDP

Firstly, the cipher and the address are 0xA7ABE12C and 0x2000FFF0, respectively.

The memory address is selected to be at the end of the SRAM1 portion of the STM32L476 MCU so

that we can safely overwrite even there is a variable using this address. (See Memory Mapping).

In Reset_Handler routine, we check if this address holds any but the cipher. In the case

of the cipher existence, indicating that UART RX Interrupt has occurred, Reset_Handler

executes the Reboot_Loader routine. In the Reboot_Loader, we first enable RCC, Clock, and

Memory Initiations then jump to 0x1FFF0000 address holding the BootLoader @ System

Memory (See Memory Mapping), and goes its Reset_Vector lying 4 bytes offset from the SP.

Moreover, writing the cipher address into itself performs invalidation of the cipher at each reset,

avoiding recursive occurrence.

On the other hand, not founding the cipher in the address means no UART RX Interrupt

triggered, therefore, no need to jump to BootLoader. Then, hence the condition is not satisfied; Reset_

Handler continues with loading SystemInit and jumps to the __main vector – the main program vector.

6

Memory Mapping

Figure 3 - Memory Map - Source

Figure 4 - SRAM1 Memory Addresses in different boots - Source 1 – Source 2

https://www.st.com/resource/en/reference_manual/dm00083560-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=76
https://www.st.com/resource/en/reference_manual/dm00083560-stm32l47xxx-stm32l48xxx-stm32l49xxx-and-stm32l4axxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=92
https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=4

7

How to Connect Devices

 For TTL connection from PC only RX, TX and GND connections are sufficient if you are

using UART TTL Converter. If you are using the USB interface, no further connections are

needed.

Which Port the device is using
 If you are using your PC to connect to the device, by using either USB TLL converter or

direct USB connection, the Port likely to be in the form of “COMx”. To check to port COM

number, you can use “Device Manager” on WindowsOS. Under “Connection Ports”, you can

see your device and port number listed here. If not the case, you may need to install the

device driver. Here is the driver for the PL2303 USB TTL converter.

Pull-up

http://www.prolific.com.tw/US/ShowProduct.aspx?p_id=225&pcid=41

8

What Happens in Bootloader Process
 When we jump to BootLoader via our Reboot_Loader routine, the device is searching all

receiver channels to catch a communication request. The protocol list is given below:

Figure 5 - BootLoader Communication Protocols - Source

 We focus on USART1 connection, for further information, please refer to the table and the

source below:

Figure 6 - Detailed Explanations For USART Connection - Source

https://www.st.com/content/ccc/resource/training/technical/product_training/08/4c/83/1b/56/bd/45/34/STM32L4_System_SYSCFG.pdf/files/STM32L4_System_SYSCFG.pdf/jcr:content/translations/en.STM32L4_System_SYSCFG.pdf#page=10
https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf#page=214

9

As stated, first, we need to

initialize our USART1 in proper settings.

To do this, we facilitate an ST software

called STM32CubeMX. By setting PA9

and PA10 pins, RX, and TX, respectively.

The software offers much more

convenience.

Then we define our USART1 parameters obeying the given rules above:

 Since the BootLoader is going to use this port also for Auto Boudrate finding, you may

need to set this parameter.

https://www.st.com/en/development-tools/stm32cubemx.html

10

To actively communicate and use the commands of bootloader, we need to follow the flow

below:

Figure 7 - BootLoader Protocol Selection - UART - Source

 We activate the communication over USART1 by sending a 0x7F data frame, consisting

of one start bit, 0x7F data, even parity bit, and one stop bit. According to the Application Note

– AN3155, the returned message is either ACK or NACK, which are 0x79 and 0x1F,

respectively.

115200

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=5
https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=8
https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=8

11

How can we order a command

Figure 8 - Command List - Souce

Communication Safety

Hence we send our command byte followed by its complementary byte. For example, the

“GET” command 0x00 is sent with its complement 0xFF, so that we establish secure

communication.

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=7

12

Receiving Information via Bootloader
There is a flowchart for the “GET” Command showing how the communication is handled.

13

How to Write our code - Write Memory command
The maximum length of the block to be written for the STM32 is 255 bytes, according

to AN3115.

If the Write Memory command is issued to the option byte area, all bytes are erased

before writing the new values, and at the end of the command, the bootloader generates a

system reset to take into account the new configuration of the option bytes.

https://www.st.com/resource/en/application_note/cd00264342-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf#page=18

14

Where to write our code
 We cannot write the code directly to an arbitrary memory location. First, we need to

compile and build the code to obtain HEX or BIN translation of the code. For codding IDE, I

use KEIL µVisionV5 Software. After we built the code, we obtain the HEX file, ready to be

written.

 The program must be written starting from the beginning of the FLASH Memory

@0x08000000 memory address (See Memory Mapping).

Some constraints we need to obey

http://www2.keil.com/mdk5/uvision/

15

Example Code to be Written
The code generated by KEIL uVision Software:

32 HEX_CODED FORM == 16 BYTES

This code is obtained via Flasher Program, which is going to be discussed next section. The whole flash

memory, in the first boot run, dumbed into code.hex and code.bin file.

16

An Example Program – STM32 Flasher

Connection Properties

17

Read or Write Protection

PROTECTION:

- Read Protection

- Write Protection

18

GET Information from the device via bootloader

GET CMD

FLASH

MEMORY

ADDRESS

19

WRITE CMD

20

Utility Tools

Hex Reader
The compiler creates HEX file of the compiled program that should be written to the user

flash memory address to start the MCU with main program. An example for compiled HEX file is

given in the Example Code section, above. Since the HEX file contains more informaiton, like

memory address and memory page address, a utility tool should extract the program HEX Codes

from the file in order to send via UART while programming the MCU.

The Python script I wrote uses IntelHex library. The _BUFFER_SIZE setting holds the max

buffer size information. The HEX file is written, main program code is extracted then dived into

chunks with size of _BUFFER_SIZE.

from intelhex import IntelHex

CONFIGURATIONS
_BUFFER_SIZE = 256

IntelHex Object Initiation

intelHex = IntelHex()

HEX FILE SELECTION

_file_name = str(input("HEX File Name to be uploaded:"))

Get Data From HEX File
intelHex.fromfile(_file_name+".hex", format='hex') # Read Hex File
hex_dict = intelHex.todict() # Dump into DICT Object

hex_byte_list = list(hex_dict.values()) # Convert to list
hex_byte_list.pop() # POP: {'EIP': 134218121}
print("FILE-Decimal Bytes:", hex_byte_list) # All bytes in decimal form

hex_chunk_list = [hex_byte_list[i: i + _BUFFER_SIZE] # Creating new list: Chunk
List
 for i in range(0, len(hex_byte_list), _BUFFER_SIZE)] # Each containing specified
many

print("\nChunks:", hex_chunk_list) # See Chunks
print('\n1st Chunk (HEX): [{}]'.format(', ' # See First Chunk in HEX
 .join(hex(x) for x in hex_chunk_list[0]))) # HEX Conversion (CHECKING)

Some Other Information
print("\nGeneral Code Information:")
print("Total # of Bytes:\t\t", len(hex_byte_list))
print("Buffer Size:\t\t\t", _BUFFER_SIZE)
print("Total # of Chunks:\t\t", len(hex_chunk_list))
print("# of Last Chunk bytes:\t", len(hex_chunk_list[-1]))

General Code Information:

Total # of Bytes: 7372

Buffer Size: 256

Total # of Chunks: 29

of Last Chunk bytes: 204

21

UART BootLoader Trigger
 The first UART receive interrupt forces MCU to boot in bootloader mode. After MCU is in

BootLoader mode, the communication can be establish by the guide of the protocol discussed in

Bootloader Process section.

 The Python code I wrote uses both time and serial libraries. Communicaiton constants are

constructed as defined in Commands sections.

import serial
from time import sleep

Color Class
class Bcolors:
 HEADER = '\033[95m'
 OKBLUE = '\033[94m'
 OKGREEN = '\033[92m'
 WARNING = '\033[93m'
 FAIL = '\033[91m'
 ENDC = '\033[0m'
 BOLD = '\033[1m'
 UNDERLINE = '\033[4m'

CONFIGURATIONS
_BAUD_RATE = 115200
_PORT = "COM5"
_SERIAL_TIMEOUT = 10
_BYTE_SIZE = 8
_STOP_BITS = serial.STOPBITS_ONE
_PARITY = serial.PARITY_EVEN

COMM CONSTANTS
_ACK = b'\x79'
_NACK = b'\x1F'
_GET_CMD = b'\x00\xFF'
_GV_CMD = b'\x01\xFE'
_GED_ID_CMD = b'\x02\xFD'
_WRITE_CMD = b'\x31\xCE'
_READ_CMD = b'\x11\xEE'
_GO_CMD = b'\x21\xDE'
_ERASE_CMD = b'\x43\xBC'

_UART_SELEC = b'\x7F'
ACK_counter = 0

Serial Object Init with proper parameters

serialPort = serial.Serial(port=_PORT,
 baudrate=_BAUD_RATE,
 timeout=_SERIAL_TIMEOUT,
 stopbits=_STOP_BITS,
 bytesize=_BYTE_SIZE,
 parity=_PARITY)

serialPort.open()

22

First Step: Trigger The USART1 RX:
print(f"{Bcolors.HEADER}UART1 RX Interrupt:", _ACK, f"{Bcolors.ENDC}")
serialPort.write(_ACK)
sleep(0.5) # Sleep For 500ms to give some time to device

Second Step: UARTx Selection Command
print(f"{Bcolors.OKBLUE}UARTx SELECTION CMD:", _UART_SELEC, f"{Bcolors.ENDC}")
serialPort.write(_UART_SELEC)
sleep(1) # Sleep For 1 sec to give some time to human

Third Step: Comm Check
char = serialPort.read()
if char == _ACK:
 print(f"{Bcolors.OKGREEN}Received ACK | UARTx SUCCESS{Bcolors.ENDC}")
elif char == _NACK:
 print(f"{Bcolors.FAIL}Received NACK | UARTx FAILED{Bcolors.ENDC}")
sleep(1) # Sleep For 1 sec to give some time to human

Forth Step: Get Command
print(f"{Bcolors.OKBLUE}Sending GET CMD:{Bcolors.ENDC}", _GV_CMD)
serialPort.write(_GV_CMD)
sleep(1)
while True:
 char = serialPort.read()
 if char == _NACK:
 print(f"{Bcolors.FAIL}Received NACK | CMD FAILED{Bcolors.ENDC}")
 break
 elif char == _ACK and ACK_counter == 0:
 print(f"{Bcolors.OKGREEN}Received ACK | CMD STARTED{Bcolors.ENDC}")
 ACK_counter += 1
 elif char == _ACK and ACK_counter:
 print(f"{Bcolors.OKGREEN}Received ACK | CMD SUCCESS{Bcolors.ENDC}")
 break
 else:
 print(f"{Bcolors.HEADER}Response:", char, f"{Bcolors.ENDC}")

	The bootloader via USART / UART interface
	Description of the problem
	Where is this Boot0 Pin?
	Boot0 pin problem?
	First Step: UART RX Interrupt
	Reset2BootLoader Function Definition
	Flash Write Function Definition

	Second Step: Soft-Reset Handling
	Memory Mapping
	How to Connect Devices
	Which Port the device is using

	What Happens in Bootloader Process
	How can we order a command
	Communication Safety
	Receiving Information via Bootloader

	How to Write our code - Write Memory command
	Where to write our code
	Some constraints we need to obey
	Example Code to be Written
	An Example Program – STM32 Flasher
	Connection Properties
	Read or Write Protection
	GET Information from the device via bootloader
	WRITE CMD

	Utility Tools
	Hex Reader
	UART BootLoader Trigger

